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NOMENCLATURE 

~, cross section area; 
co, specific heat of the fluid: 

p#o ~.x G, -= ~ ~ , dimensionless parameter, equation 
AVK 

{1 ), related to the Grashof number; 
f, local flow resistance factor, defined by the head 

loss: O_j(~)d~/pg[,4(~)] 2 for an element of length 
d~, f = 8g# for a circular tube; 

g, acceleration of gravity; 
H, dimensionless parameter, related to the heat 

losses from the collector and the head losses of 
the entire system; 

= - - ~ -  ~ 1 (~J(~)d~ flow-resistance factor ofthe 
K, L~ J'[/](~)]2, entire system; 

L, dimensionless length; 
L~, overall length of the circulation loop; 
Q, dimensionless volumetric flow rate; 
q, dimensionless heat flux per unit length; 
q0, dimensionless solar radiation heat flux per unit 

length, absorbed in the collector plate; 
s, dimensionless coordinate along the circulation 

loop; 
T, dimensionless temperature above the ambient; 
T ,  dimensionless highest temperature in the system 

[T~(L~)]; 
Tin, dimensionless mean temperature of the system; 
7~,.~, maximum possible temperature; 
AT, dimensionless temperature difference along the 

collector and the tank; 
U, overall heat-transfer coefficient (per unit length); 

UL, 
U, = ^ ~, dimensmnless overall heat-transfer 

pcpA V coefficient; 

17, characteristic velocity; 
Z, dimensionless height of the system; 
z, dimensionless vertical coordinate. 

Greek symbols 
~, dimensionless parameter, equation (4), 1/c~ 

representing dimensionless flow rate; 
fl, thermal expansion coefficient; 
y, dimensionless parameter, equation (4), 

representing energy losses or utilization of energy 
from the tank; 

t/, thermal efficiency; 
2, relative length of the tank; 
p, dynamic viscosity; 
~, relative height of the system; 
p, density of the fluid; 
qS, tilt angle of the collector relative to the horizon 

Subscripts 
c, collector; 
t, tank 

Special notation 
dimensional 

I. INTRODUCTION 

THE NATURAL-CIRCULATION solar water heater, which con- 
sists of a flat plate collector, a storage tank and conhecting 
pipes, is the most commonly used solar energy system. An 
exact theoretical evaluation of its performance requires a 
complex method of solving simultaneously the coupled 
momentum and energy differential equations [1]. In existing 
models for this system [2], temperature distributions in the 
collector and the tank are assumed linear and the mean 
temperature T,. is assumed equal in both. Accordingly, an 
overall energy balance yields Tm and the flow rate is then 
obtained by an overall momentum equation. 

The present work outlines the method of solving the 
differential energy equation and the coupled momentum 
equation to obtain the steady state temperature distributions 
and the flow rate. This model can serve only as an approxi  
marion for the behavior of the system around noon-time, 
when variation of the impinging energy flux is rather weak 
and all the system components have already been heated-up. 
However, using this simplified model, it is still possible to 
evaluate the effects of the various system parameters and 
to determine the range of validity of the commonly used 
assumption of linear temperature distribution. Comparison 
with the latter model shows that it provides quite accurate 
results of flow rates, highest temperatures and efficiencies, 
for most of the practical range of system parameters. Rather 
large deviations are found at the limits of this range. 

2. ANALYSIS 

The system (see Fig. 1) is represented by a one-dimensional 
model, c.f. [1, 2], wherein the coordinate s is taken along 
the closed-circulation loop. T(s) is the mean cross-sectional 
temperature and the flow rate Q is uniform, It is assumed 
that the heat-transfer coefficients and the properties of the 
fluid are constant, except for the buoyancy forces where the 
density depends on a constant expansion coefficient. 

Dimensionless parameters and variables are chosen: 
lengths are scaled by the overall circulation length L~. 
temperatures by the maximal attainable temperature T,,,,x = 
~o/Uc, and the flow rate by ~l? where A is a typical cr~iss- 
sectional area and 17 ~ (g~J~7?max) 12 is the characteristic 
velocity. 

The momentum equation for the entire circulation loop 
is obtained by piecewise integration over the various paris. 
For laminar flow, the dimensionless form of the equation is: 

Q = G ~ T d : .  Ill 

The energy equation is written (non-dimensionallyl for each 
part of the system : 

"0 Iconnectm~ pipcsl 
dT 

Q~ss = U,,[I-T,.(s)] 0<s__<L, (collectort 12) 
[ -U ,  Tt(s) 0 < s < L ,  (tank). 

Equations (2)are solved using Q as a constan| i~cl unknown) 
and the boundary conditions E(LJ = T,(0L T,[0)- TAL,) 
which follow from the uniformity and conth/uitv of lhe 

997 



998 

} 

i 
i 
t 

FIG. 

Shorter Communications 

^ ^ 

S:L3 

~ C c  ol lector L c 

I. Schematic arrangement of the natural circulation 
solar heater. 
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temperature profile, to yield: 
1--e ~'~ 

T~(s)= 1 l_e_=ll+y ~ e =~,r, O < s < _ L .  (3a) 

l - e  
Tt(s) . . . . . . .  ,,~--e-7=~,t, 0 < s < L, (3b) 

1 - - e -  ~ ~') 
where : 

=- U,.L,./Q, ;, =- UtL,/(U, LJ. (4) 

Introduction of equations (3) into (1) and performing the 
integratiofi, the following algebraic equation is obtained : 

- + sinq5 - [ ;  (sin 4~ + c~ l_e_~n+.:) ( 1 - e  7~) 
1' / J 

+ s i n 4 ) - 2 e  r~ i (5) 

where H =- U~/G, ~ =- Z/L,  and i ~ L,/L~.. The flow rate Q 
can be obtained by solving equation (5) for ~ [-see equation 
(4)]. The solution depends on the five parameters ;,, fl, ~, 2, 
and 4. 

The thermal efficiency is defined by the rate of energy 
transfer from the collector to the tank : 

pc,(~A7 ~ AT 
,z = , ~ - U  = ~ (6) 

------ linear approximation 

i I t i i O.OlO ~ / /  0'01 1 I00 
utility factor, T 

FiG. 2. The dimensionless flow rate 1,,~ as a function of the 
utility fador  7, for various values of the parameter H. 

The assumption of linear temperature profile 
(the "linear model") 

A simpler model for the system behavior is obtained by 
assuming linear temperature distributions in the collector 
and tank. Instead of equations (2), an overall energy balance 
is used : 

L<.~0 = C<L<.7~+C,L<L, fTi 
which yields the non-dimensional mean temperature: 

7~ -- l/(1 +.,). (8) 

The temperature difference AT is obtained from an energy 
balance of the collector (or tank): 

AT = ~,,/( 1 + 7). (9) 

(:v2, X:o-4, #,:45" 
- -~ - -  linear opproximation 

a.: T H 

I - 0 ~  

O i i _ I 
0.01 I-0 Ioo 

utility factor 7" 

/ 
b,:AT / 

1,0 / /  

/ 
/ 

i x~l 

0- '~ / /  
/ ~:o-,_ 

O.OI I-O I00 
utility factor y 

FiG. 3. The dimensionless highest temperature 7H (a) and temperature difference AT(b! as functions of 
the utility factor 7, for various values of the parameter H. 
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FIG. 4. The efficiency ~/as a function of the utility factor 7, for various values of the parameter H. 

It is seen, then, that the efficiency [equation (6)] is given by: 

~/= 7/(1 + 7). (10) 

Finally, the dimensionless flow rate 1/c~ is obtained by 
introduction of the linear temperature profile and equation 
(9) into (1): 

1 = - - -  - ~'r~---~(2 + sin ¢)]~ x/2 . (11) 
a [ (1 +7)H ) 

3. RESULTS AND DISCUSSION 

For a typical solar water heater the geometrical par- 
ameters are ¢ = 1.2, 2 = 0.4 and ~b = 45 °. The parameter H, 
which includes both heat and head losses, is 0.01 + 0.1. The 
relative tank to collector heat loss parameter 7 is typically 
0.03 but would increase by orders of magnitudes if the 
system is operated in a primary-secondary cycle and the 
tank is actually a heat exchanger. 

The dimensionless flow rate 1/a is found by a numerical 
solution of equation (5) and by equation (11) of the linear 
model. The results shown in Fig. 2 indicate that the "linear 
model" can well serve as a first approximation for estimating 
the flow rate. Deviations between this model and the more 
exact one are 5-10% in the practical range of 7 and H. For 
smaller and larger values of 7 and for larger H the deviations 
increase. It is interesting to note that as H increases the 
curves of 1/a vs 7 for the two models intersect at the range 
7 = 1-10. 

Highest temperature T H obtained by equation (3a) or 
by (8) and (9) of the "linear model" are shown in Fig. 3(a). 

It is seen, again, that the "linear model" provides good 
estimates in the practical range of parameters. However, at 
the ends of this range the deviations become larger and 
even totally unrealistic: values of T n > 1 (see Fig. 3a) mean 
temperatures which exceed the maximal possible ones. 
Moreover, the results for AT illustrated in Fig. 3(b) yield 
AT > 1 for the linear model, which is impossible, again. 
As can be seen from Figs. 3(a), (b) the "linear model" 
predicts temperatures below the ambient for large values of 
7 and H. 

The results for the efficiency are shown in Fig. 4. The 
same behavior of the "linear model" is observed: it deviates 
significantly from the more exact one for large values of 7 
and H only. 

As an example, consider the performance of the typical 
solar water heater with H = 0.01, for which 50% efficiency 
corresponds to the utility factor 7 = 1 (see Fig. 4). The 
dimensionless flow rate for this case is 1/ct = 5.7 (Fig. 2), and 
equation (4) leads then to Q = 4.4 × 10- 5 m3/s. The highest 
temperature is T H = 0.54 (Fig. 3), meaning 38°C above the 
ambient. If the same system is operated without utilization 
of energy, 7 = 0.03 represents heat losses from the tank. The 
flow rate for this case is found to be 1.1 × 10-~ m3/s and 
the highest temperature T n = 69°C. 
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